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ABSTRACT
The work presented here is focused on the issues related to the dynamics and control in

human machine interaction in the sense of power and information signals. The extender is defined
as an active manipulator worn by a human to increase the "strength" of the human wearing it. The
human body, in physical contact with the extender, exchanges information si~alf; and ~ with
the extender. General models for the human, the extender and the interaction between the human
and the extender have been developed. Unstructured modeling was chosen in order to include all the
dynamics in the systems, to avoid specific models. Small Gain Theorem (time domain) for the
nonlinear systems and the Nyquist Criterion (frequency domain) for the linearly treated systems
have been used for stability analysis of human machine interaction. The equivalence of the
conditions for stability when the Small Gain Theorem is extended to the linear systems has been
shown. The stability condition is verified in Part I of the paper on a single degree of freedom
extender.

1. INTRODUCTION
The extender system consists of three main parts: the human arm, the extender, and the

interaction between the human arm and the extender. Considering the extender as a set of rigid
members, the dynamic behavior of an open-loop extender can be derived by a set of nonlinear
differential equations via the Lagrangian or Eulerian approach [6,7]. However, there may be too
many components in an extender so the rigid body dynamics is not sufficient for modeling.
Actuators and sensors, for example, contribute to the dynamics of the extender. Usually the
dynamics of the actuators and sensors are negligible when compared with the dynamics of the links
of the extender. However, if hydraulic actuators are used to power the extender, then the dynamic
behavior of the actuators may be a considerable factor which is integrated into the total dynamic
behavior of the system. The objective is to develop an unstructured dynamic model that can represent
the complete dynamic behavior of the extender in a very general form. This unstructured modeling
focuses on the relationship between the input and output properties of the extender. The structured
dynamic models such as first or second order transfer functions that represent the dynamic behavior
of the components of the extender (e.g. actuators or sensors) have been avoided; these models
generally lead to very specific stability conditions.

In modeling the human arm, we use the same style that we used in modeling the extender; the
human arm is viewed as a dynamic system which produces an output in response to an input
command. The intent is to develop an unstructured dynamic model for the human arm in terms of a
mapping which contains all the possible dynamics involved in a particular maneuvering. The
emphasis of the model is on the functional relationship between the dynamic input and output
properties of the human arm. Therefore, we are less concerned with the internal structure of the
components in the arm model. Thus the particular dynamics of nerve conduction, muscle



contraction and central nervous system processing are implicitly accounted for in constructing the

dynamic model of the human arm.

Using the unstructured models of human and extender, the closed loop system is introduced.
By closing the loop we mean that the interaction force between the human and the extender will be fed
back and used as an input to the velocity controlled extender. The resulting extender velocity is due
to two feedback loops. The first is a natural feedback loop between the human and extender. The
second feedback loop is the controlled loop. The goal is to develop a class of compensators which will
guarantee the stability of the system as a whole.

2. DYNAMIC BEHAVIOR OF THE EXTENDER
There is no intention to design a controller for the system of the human and the extender as a

whole. This is not practical because human dynamic behavior varies from one person to the other as
well as within the same person. A velocity control algorithm is chosen as the lowest level of control
for the extender such that the extender is able to follow various velocity commands in a cartesian
coordinate frame. (See [3], for an example in development of robot tracking.) This controller is
independent of the human dynamic behavior. The velocity controller is the lowest level of control
that has been developed on the extender such that: 1) the extender is stabilized independent of the

human dynamic behaviorl and, 2) the final goal, which is to control the extender with one additional
feedback loop can still be achieved. At this stage, it does not matter how good this controller is or how
it has been developed, however, two variables generally affect the velocity of the velocity controlled
extender: 1) the input velocity command to the extender, Ue and, 2) the external force imposed on the
extender, f e' The tracking capability of the extender is a measure of how good the extender follows
the input velocity commands, Ue. The reaction to external forces is another property of the extender

which shows how the extender behaves under external forces2. Mapping Ge and 5e are given in

equation 1 to show that, the extender velocity, Ve, is a function3 ofue and fe (Subscript e stands for

"extender").

Ve -Ge(Ue) + Serre)
(1)

where:

Ve

Ue
fe

-nex1 vector of extender velocity in a global cartesian coordinate frame,

-nex1 input velocity command,
= nex1 external force vector applied on the extender,

Ge represents a stable mapping for the extender with the closed loop velocity controller. The
extender will develop a velocity 4 in response to externally applied forces. In other words, the
extender is not infinitely stiff to external forces. Even though the velocity controller for the extender
can be designed so that the extender follows the input commands and rejects the disturbances, the
extender velocity deviates "somewhat" in response to imposed forces. The extender velocity
deviation is due to either structural compliance in the extender or the velocity controller compliance.
The extender sensitivity function, Se, is defined to map an externally applied force vector to the
resulting extender velocity vector. If the extender is developed as a "good" velocity control system,
the magnitude of the velocity which results from the application of an external force will be small.

Equality 1 is the most general mapping which describes the relationship between the extender
trajectory and the input velocity command. (References [10], [11] give similar treatment for robot
dynamic mdeling). For any type of velocity controller architecture (linear or nonlinear), one can

lIt is of paramount importance in the safety of the human that the extender has a velocity controller
as the lowest level of control. When the human is not in contact with the extender, the zero input to the
velocity controller for the extender causes the extender to remain stationary.
~he external forces on the extender can be from the human or the object being manipulated. Here it
is assumed that the extender is not constrained by another object. This analysis is concerned only
with unconstrained maneuvering of the extender.
3The assumption that linear superposition holds for the effects of f e and Ue is useful in
understanding the nature of the interaction between the extender and human. This interaction is in
a feedback form and will be clarified with the help of Figure 5. It will be described in Section 6, that
the r~ults of the nonlinear analysis do not depend on this assumption and one can extend the
obtained results to cover the case when Ge(Ue) and Serre) do not superimpose.
4 ve is not restrained to be the velocity of a particlur point on the extender.



always arrive at a particular function for Ge and Se. Ge and Se are stable operators in the lp sense;
Ge : Lpn -+ Lpn, Se : Lpn -+ Lpn, and there exist scalars CX1, CX2, ~1' and ~2, such that the magnitude of
the output velocity (commanded or external force response) is a linearly constrained function of the

input (command or external force)5 , i.e.:

/I Ge(Ue) lip ( (X111(ueJllp + .81 (2)

II Se(deJ lip ( 0(211(deJllp + ~2 (3)

Defining stability in terms of Lp sense is chosen because the structure of the mappings ~(o) and 5h( 0)
are unspecified, and may be linear or nonlinear. We also desire to have JGe(o)dt be an Lp stable
function, i.e. there must be a limit on the position as well as the velocity of the extender. (This can be
achieved by including a weak positioning loop in the design of JGe(o)dt). The need for the Lp
stability of J Ge( 0 )dt will become apparent in Section 6.

The extender dynamics can be represented in the frequency domain for linearly treated
extenders6. The stable transfer function matrices, Ge and 5e, are introduced to represent the
tracking dynamics of a linearly treated extender.

Ve(Ju» -Ge(Ju» Ue(Ju» + Se(JOO) fe(Joo) (4)

Figure 1 represents the dynamic behavior of the extender. The operators in this block diagram are
unspecified and may be frequency domain mappings or time domain input-output relationships.

U e --r\ Ve--~ .
fe

Figure 1: Block Diagram or Extender Dynamics

3. DYNAMIC BEHAVIOR OF THE HUMAN ARM
The modeling approach for human arm dynamics is similar to the one described for the

extender. Depending on the type of maneuvering, the output of the human arm could be the position,
the velocity or the contact force imposed by the human. For example, if a human pushes against an
object, the contact force which develops can be regarded as an output. On the other hand, if the human
approaches a particular point in space with his arm, then the position of his arm can be considered as
an output. Along any of the directions in which the interaction (between the human arm and an
object) takes place the human arm must take on the behavior of either an impedance or admittance [4,
5, and 9]. The impedance is defined as a mapping with a flow variable (e.g. velocity) as its input;
and an admittance is defined as a mapping with an effort variable as its input. If the human arm's
dynamic behavior is governed by an admittance (impedance), the object's dynamic behavior is
governed by an impedance (admittance). In this analysis it is assumed that the human arm has an
impedance property. In other words, the human assigns a trajectory in any interaction, rather than
specifying the output force. Then the object with which the human is interacting determines the
resulting interaction force.

With regard to the above assumption two variables affect the human arm trajectory: 1) the
commanded trajectory issued from the human central nervous system, ~ and, 2) the external force
on the human arm imposed by the environment or the object being manipulated, fh. Figure 2 shows
the block diagram of the model of a human arm in a completely general form.

5 The P-norm (P E (1,00)) of a vector function, f, is defined as

1/2 1/pn
l: II fl II p2
1-1

00

J I fl IP d twhere II f, II p -II f II p -
0

6 Throughout this paper, for the benefit of clarity, the frequency domain theory has been developed in
parallel with the nonlinear analysis for linearly treated robots.
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Figure 2: The human arm trajectory is affected by both the input command and any externally
applied force.

The relationship between the input command and the human arm trajectory represents the
tracking capability of the human arm. The relationship between the extemal force and the human
arm trajectory represents the nature of the response of the human arm to extemal forces. In the most
general form, the relationship between the inputs and outputs is given by equation 5. (Subscript h
stands for "human"),

!:Ih -Gh(Uh) + Sh(fh) (5)

where

Yh -nhx1 vector of human arm position in a global cartesian coordinate frame,
Uh -nhx1 vector of intended position for the human arm generated by the central nervous system
fh = nhx1 force vector applied on the human arm,

A nonlinear mapping, Gh, from the input command (which is issued by the central nervous
system) to the human arm trajectory is defined to represent the tracking capability of the human
arm. The closest we can come to understanding the input to this mapping is to know the state of the
physical variables which we desire to achieve. For example, if the goal is to balance a broom, we
know that the desired angle of deviation from the vertical must be zero degrees. The int&n.t to balance
the broom by maintaining an angle of zero degrees is defined as the input command for this
mapping. Similarly, the closest we can come to understanding the output of the human arm is the
observation of arm position or force applied in an interaction with the environment. An example of
the output of the human arm would be the actual position of the human arm attained in attempting to
balance the broom [8, 15]. The goal is to obtain a dynamic model that can represent the complete
dynamic behavior of the human arm in a very general mathematical form. It is possible that there
may be too many components in the human arm making analysis of rigid body dynamics not
sufficient for modeling. This is an effort to avoid the structured dynamic models such as first or
second order transfer functions to represent the dynamic behavior of the components of the human
arm. These models are not general and the resulting simplified analysis develops non-general
conclusions. Note that the physiological dynamic systems such as muscle contraction and nerve
conduction delays are implicitly expressed in any part of this model. It is possible to experimentally
measure the parameters which are involved in this model without explicitly determining the
structured physiological dynamics which occur inside the mapping, Gh. Being that a human can
position his arm in any position with arbitrary orientation, ~-6.

Whenever an external force is applied to the human arm, the endpoint of the human arm will
move in response. If the human arm is a "good" positioning system, the change in position due to the
external force will be "small" as long as the magnitude of the external force lies within certain
limits. The criterion for "small" and "good" in this context will be developed in this section. The
sensitivity function Sh is defined as a mapping from the ~x1 externally applied force vector to the
resulting nhx1 position vector for the human arm. There is no restriction on the form of the mapping,
~, it may be a linear or nonlinear. Also note that the structure of the mapping is not specified, just as
in the mapping developed in equation 1. As stated above, for an arm with a good positioning system
the deflection caused by the external force will be small for forces within certain limits.

In this model we are implicitly assuming that the human arm dynamics are stable operators
in the Lp-sense. In other words, Gh and Sh are such that Gh: Lpn -+ Lpn, Sh: Lpn -+Lpn, and there
exist constants a3. a4. ~3, ~4' such that:

(6)II Gh(Uh) lip ( (X311 (Uh) lip -+ ~3

:7)

II Sh(fh) lip < ~4 II (fh) lip + ~4



Uh

Figure 3: Block Diagram Representation or Human Arm Dynamics

In the linear domain, Gh and Sh, operate as transfer function matrices which map the input
trajectory amplitude to the output trajectory amplitude. Thus at any particular set of equilibrium
angles, which are in the human range of motion the following frequency domain relationships hold:

.Yh(jW) -Gh(jW) Uh(jOO) + Sh(JW) fh(jOO) (8)

The following block diagram in Figure 3 represents the model of the human arm. The
structures of the mappings in this block diagram are completely unspecified. They may be
defined in terms of frequency dependent transfer function matrices for a linear domain or a
time domain nonlinear input-output relationship.

4. DYNAMICS OF THE EXTENDER AND HUMAN ARM TAKEN AS A WHOLE
If the extender and the human arm are in contact with each other, an interaction force will

develop. The force developed by the interaction of the human arm and the extender will be modeled in
terms of the relative positions of the extender and the human arm. The operator E is defined to map
the difference in position, \Jh- Ye to the interaction force, fe. The operator E represents the physical
compliance of the human flesh and the force sensor which is located between the human arm and the
extender. Note that since the force sensor is very stiff, E will be dominated by the physical
compliance of the human arm flesh. Note that the force on the extender is equal in magnitude but
opposite in direction to the force on the human arm. This relationship is expressed by equation 9.

fe --fh -E(Yh- Ye) (9)

where Ye is the position of the extender. In a simple linear case, E can be modeled as the stiffness of a
linear spring such that f e -EX(Yh- Ye).

Figure 4: The Interaction Between the Extender and the Human Operator

An assumption is made so that this interaction is stable in the Lp sense, that is, E: L np-+L np,
and there exist scalars such that the interaction force is a linearly constrained function of the
difference between the human arm position and the extender position, i.e.:
II E(Yh-Ye)l~ < 0(5 II(Yh- Ye)llp + ~5 (10)

When the extender and the human arm are in contact, equations 1, 5, 9, 10 are governing the
dynamic behavior of the extender and human taken as a whole. These equations are written here in
conjunction with equation 14 to form the four fundamental equations of the interaction between the
human arm and the extender:

~h -Gh(Uh) + Sh(fh)

fe -E(~h -JVe dt)
ve -Ge(ue) + Se(fe)

fh --fe

(11)
(12)
(13)
(14)



The interaction force acts on both the extender and the human arm and effects extender velocity and
the human arm position as would an externally applied force. Note that the interaction force is
defined as positive when Yh- Ye>O, i.e. the human is pushing on the extender.

The block diagram shown in Figure 5 is a combination of the block diagrams shown in
Figures 1, 3 and 4. Equations 11-14 represent the relationship of the mappings in Figure 5. Note that
when the human arm and the extender are in contact, the number of degrees of freedom in the human
arm is constrained to the number of degrees of freedom in the extender, i.e. ~- ne. When the human
arm and the extender are not in contact, the interaction force becomes zero and the dynamics of the
extender and human simplify to equations 1 and 5.

Figure 5: Block Diagram of the Human and Extender

The mapping W :el-+ f e is defined to simplify the block diagram of Figure 5. This mapping is
shown in Figure 6.

W is assumed to be a stable operator in the Lp sense, that is W: Lpn -+ lpn, and there exist scalars 0!6
and ~6 such that the output is a linearly constrained function of the input:

II W(e,) lip < 0!611 (e,) IIp+ ~6 (15)

If all the operators in Figure 6 are linear transfer function matrices, ve and f e are given by the
following equations (when Ue is zero):

Ve -Se E On+ Sh E+ SeE/s)-1 GhUh (16)

fe -E On+ShE+SeE/s)-1 GhUh (17)

S. DESCRIPTION OF CLOSED LOOP ARCHITECTURE
As shown in Figure 5, the combination of the dynamics of the human and the extender, has

two natural feedback loops. The first natural feedback loop involves the effect of the interaction force,
r e, on the extender. The interaction force has a small effect on the velocity of the extender if the
extender velocity control loop has a small gain for the sensitivity function, Se. The smaller the
gain 7 of the extender sensitivity, the less effect this interaction force has on the extender velocity.

The second natural feedback loop involves the effect of the same interaction force on the human arm.
The human sensitivity function, Sh' is a mapping from the interaction force to the position of the
human arm. A small value for the gain of Sh results in a small deviation in the human's arm

7 The smallest positive scalar constant (X4 such that there exists a positive scalar constant ~4 such

that inequality 7 is satisfied id defined as the gain of the operator, 5e-



position. Note that ~ is a characteristic of the human arm dynamics. ~ varies between humans
and may vary within the same human. The sensitivity may vary as a result of several variables,
one of which may be time.

If, in Figure 5 Ue and lIII are zero (i.e. the input to the extender is zero and the human has no
intention to move) so the interaction force will be zero. If the human decides to move his hand (i.e. uh
becomes a nonzero value), and Ue is still set to zero, a small extender velocity will develop as a result
of the interaction force. The deviation of the extender velocity will be trivial if 5e has a small gain,
even though the interaction force may not be small. In other words, the human arm generally does
not have the strength to overcome the extender velocity control loop. We desire to increase the
effective strength of the human by increasing the apparent sensitivity of the extender. This can be
done by using the interaction force as an input to the extender velocity control loop as shown in Figure
7. The interaction force is measured, then filtered by the compensator, H. The compensator, H, is
introduced to properly modify the interaction force. At this point there is no restriction being placed
on the structure of H. The output of the compensator is then used as an extender input command, Ue'
Note that the mapping [GeH(o) acts in parallel to [5e and thus has the effect of increasing the
apparent sensitivity of the extender. To increase the apparent sensitivity of the extender, Figure 7
suggests choosing a large gain for H. However, the designer does not have complete freedom in the
design of H. The closed loop system must remain stable for any chosen value of H.

The goal is to develop a criterion on the compensator H which will guarantee the stability of
the system in Figure 7. The compensator, H, must be designed to meet the specifications of the system
in addition to satisfying the stability criterion. Using the Small Gain Theorem for the nonlinear
input-output model of the system, a condition is obtained on the compensator, H, which will guarantee
the stability of the closed loop system. The stability of the system is also analyzed via the
multivariable Nyquist Criterion when the extender and the human arm are treated as linear time-
invariant systems in the frequency domain. The frequency domain stability analysis gives more
insight to the nature of the chosen architecture for the closed loop system.

U e l fII --""0-":'
")--"'0-----

! H
u ie-

compensator

Figure 7: Architecture of the Closed Loop System

6. NONLINEAR TIME DOMAIN STABILITY ANALYSIS
A sufficient condition for stability of the closed loop system of Figure 7 is developed via the

Small Gain Theorem. By determining this sufficient condition, a class of compensators will result
which guarantee the stability of the closed loop system of Figure 7. Note that the stability condition
derived in this section does not give any indication of the performance of the system; it only ensures
a stable system. Section 9 will address the role of the compensator in system performance. The
Small Gain Theorem is an appropriate approach in the stability analysis because unstructured and
general operators are used in modeling the extender and human dynamic behavior. Figure 8 shows
a simplified representation of the system in Figure 7. The operator W maps el to the interaction force
between the human and the extender, f e' (If all the operators in the system are linear transfer
function matrices, W is equivalent to E(In + ShE + SeE/B)-I,
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Figure 8: Closed loop system, where H, Ge and Gh are unstructured mappings

The following theorem (Small Gain Theorem), gives a sufficient condition to guarantee the stability
of the closed loop system [1, 16].

Theorem:
If the following three conditions hold,

(18)
(19)

I. JGe(eV is an Lp stable operator, that is:
a) JGe(ez): Lnp -+ Lnp

b) JI JGe(ez) lip < ~711 ezllp + ~7 (~7 and ~7 are positive constants)

II. H(.) is selected as an Lp-stable operator such that the forward mapping HW(el) remains Lp stable,
that is:

a) HW(el): Lnp -+Lnp (20)

b) IIHW(el)llp ( ()(ell ell1p + ~e «()(e and ~e are positive constants) (21)

III. ()(7 ()(e ( 1 (22)

Then the closed loop system of Figure 8 is Lp stable. The proof is given in Appendix A. Since U2-0,
e2 is equal to HW(e,). Substituting forlle211p from inequality 21 into inequality 19 results in
inequality 23.
II SGeHWCe,) II p < ()(7()(ell e, II p + ()(7,ge+ ,97 (23)

Inequality 23 shows that Of.70f.e represents the gain of the loop mapping, JGeHW(e1). Thus the third
stability condition (22) requires that H be chosen such that the loop mapping, JGeHW(e,) is linearly
bounded with less than unity slope. The following corollary develops a stability bound if H is selected
as a linear transfer function matrix, while the other operators remain as nonlinear operators.

Corollaa
If Hand Ware Lp stable operators, and H is a linear operator, the following inequality is

true[l]:

II Hw(e,)llp ~ 't" II W(e,) lip

where 't" -O"max(M)

0" max(') indicates the maximum singular value, and M is a matrix whose ijth entry is II Hljll,- In
other words, each member of M is the L, norm of each corresponding member of H. Substituting from
inequality 15 into 24:
II HW(e,) lip < '('cx611 e, lip + '('136 (26)

Since U2 in Figure 8 is zero, inequality 26 can be substituted into inequality 19 to obtain inequality
27.
II !GeHW(el) lip < 7OC6OC711 ell1p + 7OC7~6 + ~7 (27)

In order to guarantee the closed loop stability of the system inequality 28 must be satisified:

'1(X6(X7 < 1 (28)
1or '1 < (29)-

~6~7



Note that inequality 29 is a sufficient condition to guarantee the stability of the system. If H is chosen
such that 7" satisfies inequality 29, then the closed loop system is stable. If 7" does not satisfy
inequality 29, no conclusion can be drawn as to the stability of the closed loop system of Figure 8.

7. FREQUENCY DOMAIN STABILITY ANALYSIS
This section develops a Nyquist stability criterion for the closed loop system in Figure 7 when

all the operators are linear transfer function matrices [2, 12, and14]. The interaction force and the
velocity of the extender are given by the following equations:
Ve- (Se+ GeH)E(In+ ShE + SeE/s + GeHE/s)-1GhUh

fe -E(In+ ShE + SeE/s + GeHE/s)-1GhUh
(30)(31)

The objective is to arrive at a sufficient condition for the stability of the system. This
condition leads to the introduction of a class of compensators that can be used to increase the apparent
sensitivity of the extender system. The detailed derivation of the stability condition is given in
Appendix B. According to the results of Appendix B, the sufficient condition for stability is given by
inequality 32.

O"max(GeH/s) < O"mln((!n+ ShE + SeE/s) E-1) for all WE (0,00) (32)

A more conservative condition is given by inequality 33:

O"max(H) < O"mln(Ge-1S(In+ ShE + SeE/s)E-1)

< 1
O"max(Ge/S) O"max(E(In+ ShE + SeE/s)-1) for all cue(O,oo) (33)

Inequality 33 is a sufficient condition for stability. If this inequality is not satisfied, no conclusion
on the stability of the closed loop system can be reached. In other words, if H is chosen outside of this
class, instability may occur. For a single degree of freedom extender, inequality 34 is a sufficient
condition for stability.

I GeH/s I < I (1+ ShE + SeE/s)-1 EI for all wE (0,00) (34)

8. COMPARISON OF STABILITY CONDITIONS
This section shows that the condition obtained via the Nyquist Criterion, (inequality 33) is a

subclass of the condition obtained by the Small Gain Theorem. If all the operators in Figure 8 are
linear transfer function matrices,

W(s) -EO + ShE + SeE/S)-1 (35)

Figure 9 shows the closed loop system when all the operators are linear transfer function matrices.

Figure 9: Simplified Block Diagram of the Closed Loop System in the Frequency Domain

The following inequalities are true for the linear system when p=2:

II HW(el) 112 < ~1 ~3 II el 112 (36)

II SGe(e2) 112 < ~2 II e2 112 (37)

where
JlI -0" max(NI), and NI is the matrix whose Ijth entry is given by

(NI)IJ -sup<.> I (H(jc.»)IJI,

].12 -O"max£N2), and N2 is the matrix whose IJth entry is given by



(N2)IJ .SUPc-> I (Ge(jc.»/ jc.»IJI

Jl3 -O"max(N3). and N3 is the matrix whose Ijth entry is given by
(N3)iJ -SUPc.> I (W(jW))IJI .

Considering inequalities 36 and 37, one can satisfy inequality 38 to guarantee the stability of the
system.

JlI Jl2 Jl3 < 1 (38)

(39)

or:
1Jl1 < jl";jl;

Note that the following are true:

O"max(H) < 111 for all (A> E (0, 00)

O"max(Ge/s) < 112 for all (A> E (0, 00)

O"max(W) < 113 for all w E (0, 00)

(40)

(41)

(42)

Substituting 40, 41 and 42 into inequality 39, which guarantees the stability of the nonlinear system,
the following inequality is obtained:

O""max(H) < 1_-O""max(Ge/5) O""max(E(I + ShE+ SeE/5)-I) for all wE (0, 00) (43)

Inequality 43 is identical to inequality 33. This shows that the linear condition for stability given by
the multivariable Nyquist Criterion is a subset of the general condition given by the Small Gain
Theorem.

9. INTERPRETATION OF THE STABILITY CONDITION
In this section a physical interpretation of stability condition is developed. To develop this

interpretation we use the linear stability condition given by inequality 32. Defining St- E-1 + Sh,
inequality 32 can be rearranged to give inequality 44.
O"max(GeH/s) < O"mln(Se/S+ SJ for all cuE (0,00) (44)

Note that St is the total compliance of the human arm, i.e. the compliance of the flesh, E-1, along with
the positioning compliancy, Sh. Inequality 44 states that to guarantee stability of the closed loop
system there must be some initial compliancy in either the human arm, St. or the extender velocity
control system, Se. If Se is very small, inequality 45 must be satisfied for stability:

O"max£GeH/s) < O"mln£ SJ (45)

Inequality 45 states that the stability range will be larger if the total compliance of the human arm is
large. A large value for St implies a weak hand and/or soft tissue. A small St results in a small
stability range, and in tlle limit when St --0, no H can stabilize the closed loop system. A small
value for St implies a very good positioning system for tlle human arm, while a small value for Se/s
represents a very good velocity tracking system for the extender. These two systems do not
complement each other and may result in an unstable interaction. In tlle limiting case where Se is
zero (i.e. the extender is a perfect velocity tracking system), Sh is zero (i.e. human arm is a perfect
positioning system) and E --()() (the arm is very hard), no compensator H exists which will stabilize
the system. The limiting case, where Sel Sh and 1/E are all zero, can also be represented as a
violation of causality via the bond graph method [13].

IVhl
By examining the ratiorv;rthe effect of the compensator on system performance can be

observed (ve -0). If tllis ratio approaches unity, tllen the extender velocity will approach the hand
velocity. If all the operators in the closed loop system of Figure 7 are linear transfer function
matrices, the relationship between the velocity of the human arm and the extender velocity is given by
equation 46.

Vh -(I + s(SeE + G.HE)-1)ve (46)



The goal is to show that ve approaches Vh as H becomes very large.
Euclidean norms of Vh and ve is given by equation 47.

The maximum ratio of the

IVhl
max I~ -O"max( 1+ s(SeE + GeHE)-I)

or:

IVhl O"max(sE-1)max -~ 1 +
I vel O"mln(Ge)O"mln(H)-O"mln(Se)

Within any bounded frequency range, the numerator of the fraction is bounded. Sa, Ge and E are
also bounded quantities. Thus if 0" mln(H) -+ 00 the fractional portion of equation 48 will approach

zero, and mox~will approach unity. Therefore, it is desirable to have a large gain for H in order

to improve the performance of the system. However, we cannot make H arbitrarily large, because of
the limitation imposed by the stability criterion (inequality 33). In other words, there is a trade-off
between performance and stability in the closed loop system.

10. SUMMARY
Unstructured dynamic models for the human and extender have been developed in terms of

nonlinear time domain mappings and linear transfer function matrices. The stability of the
extender and human taken as a whole has been considered in this article. First, the Small Gain
Theorem is used to determine a sufficient condition for stability in the completely general,
unstructured, nonlinear system. Then, a sufficient condition for stability for the linear, time
invariant, frequency domain model is determined. The condition for stability is determined using
the multivariable Nyquist Criterion, with the "size" of the operators evaluated in terms of singular
values. The equivalence of the conditions for stability when the Small Gain Theorem is extended to
the linear system has been shown. The stability conditions can be given a physical interpretation
which shows the limit on the gain of the compensator is dependent upon the total compliance in the
system, i.e. the physical compliance of the flesh along with the sensitivities of the human arm and
extender. The effect of compensation on system performance has also been shown. Based on this
result it is desirable to have a large gain for the compensator. However, the stability condition places
a limit on compensation and thus there is a trade off between performance and stability.

APPENDIX A
Proof of the Stabi1it~ Criterion:
First we define the closed loop mapping A, which maps from Uh to e" Uh and e2. The goal is to
determine under which condition this mapping will be stable. The error signals, e, and e2 are given
by equations AI and A2.

e, -Gh(Uh) -IGe(e2) (AI)

e2 -HW(e,) (A2)

For each finite time interval T, the following inequalities hold:

II e1T lip ( II Gh(Uh)T lip + II !Ge(e2)T lip for all t E (0, T)

" e2T "p < " HW(e1)T lip for all t E (0, T) (A4)

Inequalities A3 and A4 are true because JGe(ev and HW(e,) are Lp-stable. Also, since JGe(ev and
HW(e,) are Lp-stable operators, considering inequalities 19 and 21 inequalities A5 and A6 are true.

II e'TIl p ( II Gh( Uh)T II p + CK.711 e2TII p + ~7 for all t E (0, T) (A5)

II e2TII p ( CK.sll e'TIi p + ~s for all t E (0, T) (A6)

Considering condition III (inequality 22), inequalities A7 and A8 can be obtained by rearranging
ineQualities A5 and A6.



II e1Tlip < 1-~-~... ( II Gh(Uh)T IIp+ ~8+ tX8~7) for all te(O, T) (A7)
1

II e2T/lp < ;--!.-(CX7/1 Gh(Uh)T IIp+ ~7+ CX7~8) for all t E (0, T) (A8)-CK7CKS

Inequalities A3 and A4 show that e'T, e2T are bounded for all t < T. This is true for every finite T,
thus e, and e2 are members of L "pe, or equivalently A : L "pe-+ L "pe. In order to prove the lp stability
of the closed loop system one must show that mapping A is anLp stable operator, as defined in
Definition 5. Because the input Gh(~) E L "p, by definition the p-norm of ~(Uh) will be less than 00
for all t E (0, 00). Combining this fact with inequalities A7 and AS, inequalities A9 and AlO are
true.

for all t E (0, 00)

for all t E (0, 00)

II e1 lip ( 00

II e2 lip ( 00 (AI 0)

This inequality implies that e1 and e2 belong to Lp-space whenever Gh(Uh) belongs to Lp-space.
Now, by using the same steps taken to obtain inequalities A7 through AS, the following inequalities
can be obtained (subscript T is dropped):

II e,llp < ,--'--( II ~(uh)lIp+ ~8+ (X8~7) for all t E (0, 00)
-eK7eKS

I
II e211p < (a711 Gh(Uh) II p+ ~7+ a7~8) for all t E (0, 00) (A12)1- CK7 CK 8

Inequalities All and Al2 show the linear boundedness of II e111p and II e2 lip by II Gh(Uh) lip.

Inequalities A9 -Al2 taken together guarantee the Lp stability of mapping A

APPENDIX B
The goal is to arrive at a sufficient condition to guarantee the stability of the closed loop system shown
in Figure 7. We will use the multivariable Nyquist criterion to obtain this condition. The simplified
block diagram of Figure 7 is shown in Figure Bl.

Figure Bl: Simplified Block Diagram or the Closed Loop System

Note that there are three elements in the feedback loop. The transfer functions 5h and 5e/s
represent the natural feedback loops which occur as a result of the interaction between the human and
the extender. The third element, GeH/s, is the controlled loop which acts to increase the apparent
sensitivity of the extender. If we eliminate the feedback loop by setting H -0, the system reduces to
that represented by Figure 5, i.e. a human and extender in contact. The goal is to obtain a sufficient
condition on the compensator which will guarantee the stability of the system when H is nonzero. To
achieve this goal we use the multivariable Nyquist criterion. The following assumptions are made:

1. The closed loop system in Figure B1 is stable when H -O. We are assuming that the system
remains stable when the human and extender are in contact. This is the system shown in Figure 5.

2. H will be chosen as a stable linear transfer function matrix. If H is stable, the loop transfer
function (SeE + ShE/s + GeHE/sJ will have the same number of right half-plane poles as (SeE +

ShE/sJ.

3. The number of marginally stable poles for (SeE + ShE/5 + GeHE/5) and (SeE + ShE/5) are the

same.



An assumption is made such that the system in Figure Bl is stable when H -O. The goal is to
determine how robust the system is when the term GeHE/s is added to the feedback loop. According to
the Nyquist criterion, the system shown in Figure Bl will be stable as long as the number of clockwise
encirclements of det( I + SeE + ShE/s + GeHE/s) around the origin of the s-plane is equal to the
number of unstable poles of the loop transfer function, (SeE + ShE/s + GeHE/s). By assumptions 2
and 3, we know that (SeE + ShE/s + GeHE/s) and (SeE + ShE/s) have the same number of unstable or
marginally stable poles. Assuming that the system is stable when H -0; the number of
encirclements of the origin by det( I + SeE + ShE/ s) is equal to the number of unstable poles in SeE +
~E/s. When compensator H is added to the system, the number of encirclements of the origin by
det( I + SeE + ShE/s + GeHE/s) must be equal to the number of unstable poles in SeE + ShE/s +
GeHE/s in order to guarantee closed loop stability. Because of the assumption that the number of
unstable poles in SeE + ShE/s and (SeE + ShE/s + GeHE/s) are identical, det(I + SeE + ShE/s +
GeHE/s) must have exactly the same number of encirclements of origin as det(I + SeE + ShE/s).
In order to guarantee equal encirclements by det( I + SeE + ShE/B) and det( I + SeE + ShE/s +
GeHE/ s) , insurance is needed such that det( I + SeE + ShE/ s + GeHE/ s) does not pass through the
origin of the s-plane for all frequencies.
det(I + SeE + ShE/s + GeHE/s) .0 for all <A>E (0,00) (Bl)

+ SeE + ShE/s + GeHE/sJ does not pass throughA sufficient condition which guarantees that det(
the origin of the s-plane is given by B2:
O"max(GeHE/s) < O"mln(I + SeE + ShE/s) for all Co) E (0, 00)

A more conservative condition:
O"max(H) < O"mln(Ge-1E-1s + Ge-1(Se + Sh/S)) for all c..>E [0, 00)
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